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I. INTRODUCTIO N

Dispe r sion of mi ssi l es can b e separa ted in to two pr inc ipal categories;

( 1) c r o s s-r a n g e  d i spe r s ion  resu l t ing  fro m lif t  nonaveraging and (2) up- or

down-range e r ro r associated with d rag  u n c e r t a i n t y and atmosph er ic  va r iations

such as winds .  Winds also con t r i bu t e  to c r o s s_ r a n g e  d i spers ion .  Cont rol

o f up- or  down.-rar ige e r r o r by compensat ing for  drag  unce r t a in ty  (drag

modulation) has been t reated previous l y. It has  been shown that  very  l i t t le

energy  is required to effect  l arge  changes in d rag  by yaw_moment  cont rol

of angle of attack. 
1,2 The missile is cont rolled in a circular coning motion

in which the drag is a s t rong funct ion of the coning h a l f_ a n g le (ang le of

attack).  Changes in d rag  caused by ext raneous sources , as de tected by dra g

dece lerat ion , ca n be co mpensa t ed f or by appropriately i n c r e a s i n g  or

decreas ing  the ang le of attack.

C r o s s - r a n g e  d ispers ion  resul t ing  f rom lift  nonaverag ing is one of th e

g rea te s t  cont r ibu tors  to missi le  impact e r r o r .  The sources  of such d ispers ion

are qui te var ied  and include launch e rr o r s  caused by muzz l e  dis tu rbance ,

small mass and configurational asymmetries , 
4 , 5 , 6 , 7 and asymmetr ic

bounda ry - l aye r  t rans i t ion  (in the case of bal lis t ic  r een t ry  vehic les ) .  8 It is

well known that dispersion caused f rom variat ion in body-f ixed  asym-

met ries var ies  app roximately inve rsely with roll rate , 5~ 8 and that  such dis-

pe rsion can be cont rolled by m a i n t a i n i n g  the roll rate at a su f f i c i en tl y l a rge

stead y value (rol l  cont ro l ) .  However , ce r tain fo rms  of d i s tu rbance  moments

can adversely affect the lift-vecto r precession rate and p roduce  lif t  non-

averaging dispersion somewhat independent of the roll rate. 
8

In this report , a genera l  method is descr ibed  for  the desi gn of feedback

control to l imit c r o s s - r a n g e  d i spe r s ion  caused by l i f t  nonaverag ing . This

cont rol would comp lement d rag  control  to l imit  up- and down- range  e r r o r ;

the r e s u l t i n g  two -loop system would contro l major  sources  of miss i l e

dispc rsion.

-7-
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II. ANALYSIS

A. CONTRO L EQUATIONS

C r o s s - r a n ge d ispers ion resul t ing fro m lift  nonaveraging can be

desc r ibed  in terms of the comp lex missi le  t r a n s v er s e  velocity V v + iw in a

p lane normal to the average flight path . Thi s velocity is defined in te rms

of the total ang le of attack 8 and lif t-vecto r precess ion  ang le 4i according

to
8 (Fig.  1).

V( t )  = V(O )  - 

iL
01

t 
Ge~~ dt 

* 

( 1)

where  L0 is the lift fo rce  derivative and m is the missi le  mass .  If the

av r value of the t r a n s v e r s e  velocity V(t)  is set equal to zero prio r to any

1 rice in G and 4~ that causes lift nonaveraging , then the c r o s s -r a n g e

i-i resulting f rom a dis turbance is propo rtional to the magni tude of

.i~~e rage  value of V at su f f i c ien t l y large time t after  the d i s turbance .

The behavior of the ang les e and 4i is descr ibed app roximately by the

undamped equations of motion f o r  a slowly rolling (p = c o n s t.) ,  axisymmetr ic

m issile
1

2 2 M~ M8d ‘~n~~~~
’ ~~ 

~~~~~~~~~~~~~ 1’~ 
(2)

M M
0~ + 2 O ~ = — . ~) L + .~—~ Y ( 3)
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where  M and M are  aerod ynamic pitch and yaw dis turbance  moments in

the w i n d_ r e f e r e n c e d  axes and M and M are  app lied control  moments .
op

The control  problem is to define the moments M and M in te rms of
op

appropriate state variables  that minimize the net t r an s v e r s e  velocity V

resu l t ing  f rom some distu rbance .  The problem is that of an optimal regulato r

with a cost function equal to the magni tude of the in tegra l  in Eq. ( 1) .

It is assumed that the mi3s ile  is in i t ia l ly untr immed in a c i rcu la r

coning motion to permi t  a suffic ient  level of d rag  control  by ei ther  inc reas ing

or  dec rea s ing  the ang le of a t tack.  
1 C r o s s-r a n g e  d i spers ion  is then con-

trol led b y minimizing the coupling between ang le-of -a t tack  and pr eces s ion

ang le pe r tu rbat ions that cause lift nonaveraging in a c c o r d a n c e  with Eq. ( 1) .

The equations of motion , Eqs .  (2 )  and ( 3 ) ,  can be l inear ized  in terms of

small pe r tu rbations about the quas i - s teady values 9 = 8 and ~ = w .
1 

With

9 = 9 + 9,~ and ~i w + s u b s t i t u t e d  in Eqs. (2 )  and (3) and hi gh e r - o r d e r

t e rm s neg lected (where  $~~ and are  small p e r t ur b a t i o n s ) ,  the resu l t ing

l inea r  contro l equations can be wr i t ten

M M
- 2wO~4i + -_~l~ + —~-2. (4)

M M
z
~~

e ÷ +~~ ÷ 
__

~~~~ + (5)

where  the control moments  are  assumed to be l inear  funct ions  of the state

va r i abl e s  8
~

, O÷
, and ~~~~ accord ing  to

Aerod ynamic  damping is omitted , and the roll ra te  is assumed to be small
such that I

~
p/2 I  <<

~1 1— 

— —. ——-- - — —--S 
~~~~~~~~~~~~~~~~~ 

-



- 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~—.-.-—--.- -

~—- --.-—----——

M
___ = - AO~ - BO~ - C~~ (6 )

= - DO
+ 

- EO
+ 

- F
~~+ 

(7)

It is convenient to nondimerisionalize the control equatic ‘ .s by def in ing  new

variables

a
~~~

0
÷

/O . X~~~~Ji~~ /w , T
~~~

)
n t (8)

If these var iables  a re  subsit i tuted in Eqs.  (4) throug h (7) ,  sinc’- d /dt = w d/ d T ,

and the Lap lace t r ans fo rm with respect  to T defined by

~ ~~ =f 
( ) e ~~~

T
dT (9)

is taken , the control  equations can be wr i t t en

s
2

+bs+a c-2  a rm

= i  p (10)
(2 +e)s+d  s+f X [m y

w h e r e  the nondimens iona l  feedbacks  a , b , c , . . . a re  def ined by

A B C D E Fa a — ,  h~~~—, c~~~~— . , d~~~— , e~~~— , f m — — ( 1 1)2 2
n n n nn n

~ This step is not essential  for  the anal ysis , but it faci l i ta tes  the numer ica l
evaluation described later .

-12- 
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and the nondimensional transformed disturbance moments are

m —
~~~~-- ‘jIM ) ,  m 2— 

‘J ’(M ) (12)
~ ~‘ ~~~OI

n n

The transformed nondimensional contro l moments, Eqs. (6) and (7) ,  can

similarly be writ ten

= -[ (a + bs) a (s)  + cX (s)} (13)

m = -[ (d + es) a (s) + fX(s)] (14)o y

The t ransverse velocity , Eq. (1) ,  can be written in nondimensional

fo rm with the subst i tutions 0 = 0(1  + a) and

+ dt 1T (1 + X) dr (15)

which yield s

V ( T )  = V(0 )  - i9~~~Oj (1 + a) exp 
[if

T 
( 1 + X)dT]dr (16)

where  the relatio n for pitch f requency  = L0
x

~ t / I is used and a c h a r a c t er i s t i c

length I = I/mx t is defined.  The control problem defined by Eqs. (10 ) and

(16)  is that of a l inear  optimal regulator .  The optimal l inear  feedbacks a ,

b , c , . . . that will minimize the cost function , Eq. (16 ) ,  a re  to be deter-

mined.  It is neces sa ry  to include the additional const ra int  on the cost func-

tio n that the cont rol moments remain within acceptable limits to prec lude  the

t r ivial case of ve ry  large feedbacks by re def ining the cost function

- 13-
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= W 1
VV~ + W2 f~~m5 

2d-r + w3f m5
2dT ( 17)

where V~ is the complex conjugate of V , m5~ and m5~ are  the nondimens ional

control moments defined by Eqs. (13) and (14) , and W1, W2, and W3 are

suitable weighting functions.

B. SO LU TIO N FOR LINEAR OPTIMAL CONTRO L

The solution to Eq. (10) fo r  a(s)  anci X(s )  is of the fo rm

N 1(s)  N 2 (s)
a (s)  

~~Dfs) 
X ( s )  = D(s)  

(18)

where N 1(s ) , N 2 (s) ,  and D (s)  a re  polynomials in s of order  depending on the

fo rm of the distu rbance moment s m and m and with coefficients containing
p y

the feedbacks a , b , c , . . . to be determined.  The control moment terms  in

Eq. ( 17), in the form of in tegra l_ square  values , can be readily evaluated
9, 10

from the resul ts  of Eq. (18) in te rms of Phillips integrals .

For examp le , if the system is third o rder  and the pi tch_ control

moment m0~~1 Eq. ( 13), has the fo rm

c
2 s + c 1

s + C 0
m6 

= 3 2 
( 19)

~ d 3s + d 2 s + d 1s + d 0

the integral  13 =f m6~~dr has the value

I 
c~ d0d 1 + (c~ - 2c 0 c2 )d 0d 3 + c~ d2d 3 0

3 2d 0d 3(d 1d 2 - d0d 3) 
(2

- 14- 
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Evaluation of the t ransverse  velocity term VV~ is much more difficult

because of the nonlinear coupling between a and X in Eq. (16) .  A reasonable

approximation to Eq. (16) can be obtained , however , by writing it in the form

V ( T )  = V(0) - il ~ n~~
1

T 
[ 1 + a ( r ) J  e

1X
1

(T)
e

1T dT (21)

wh e r e

X 1 (r )  
J

T
X(T)dT X 1

(s ) = ii! -.~ (22)

and the upper limit of the integral  in Eq. (21)  is taken to be sufficientl y lar ge

to include the net change in V ( T)  resulting from pertu rbations a (T) and Mm) .

Without loss of general i ty ,  this upper limit can be taken as ~~, and Eq. (21)

becomes the Four ie r  t ransfo rm of the funct ion f(T)  -~

V V( 0) - ~~ 
~ n~f 

f(T) eIT dT (23)

where

f~T) = [i + a(i-) 1 e i
(T) (24)

Since a(r) and X (r ~ a re , in general , small pertu rbations , accord ing to their

definit ions , Eq. (8) ,  the exponential in Eq. (24) can be expanded to obtain for

f(T) the approximation

f(T) 1 +a(T )  + iX 1(r) + ia(r )X 1(r) - 
~~ [ \

1
(r)] 

2 
+ (25)



Equation (23) can be evaulated in term s of the Laplace transfo rm of f(T),

Eq. (9),  with s -i. The constant te rm in Eq. (25) is the contribution to

V(t) from 0 prio r to a disturbance that causes 0(T ) and \(-i-) .  If  V ( 0)  in Eq. (23)
is defined as the average value of V(t) prio r to a disturbance , both the

constant and V(0) can be d ropped , since only the net change in V from the

perturbation is of interest.8 Equation (23) can then be written

= -it ~ O i f a(T) + iX 1
(r) + i O(T)  ~~1

(r) - 
~~~ [ X

1
(r) ] 

2 
+ • j  ~ =

= _ i t w  et a ( s )  + i + i.~ ’~a(T ) X1(r )~ - ~ ~J f X ~ (T)]
2 

+ . . .
~~ 

=

(26 )

where a(s), X(s), and X 1(s) are g
iven by Eqs. (18) and (22) .  A f i r s t - o r d e r

solution consists  simply of the f i r s t  two terms , which , from Eq. (18),  can

be wri t ten

— 
N 1(- i)  - N 2 (- i)

= -it~~ 0 (27)n D(-i)1st ord

A second-order solution includes , in addition to Eq. (27 ) ,  the terms involving

the Lap lace t ransfo rm of a product .  For the case where  a( s )  and X ( s ) ,  given

by Eqs. (18) and (22) ,  consist of m and n f i r s t_ o r d e r  poles , resp ec tive ly,

and no others, the Laplace transforms are given by
U

m
=

~~~~~~ ~~~~~~ 
- sk ) (28)

n N (s.) . -

T[ ~~( ) J 2 
~~ D~~s~ 

X
1
(s - s.) (29)

J = 1  1 3

- 16-
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where 5k are roots of D(s)  = 0 and s. are roots of D 1( s )a  sD(s) = 0. Thus,

the approximate solution for  V , given by Eqs. (26) through (29) ,  is obtained

directly from the s_ p lane solution of the control equations in the fo rm of

Eqs. (18) and (22) .  The optimum feedbacks are those values that minimize

the cost function, Eq. (17), according to

81 
— 

aX 
— 

81 — o  3
~a ° ’ w ~~ ° ’ w ~~~~~~~~ ( 0 )

C. RESPONSE TO IMPULSIV E YAW MOMENT

The method is i l lustrated with a simple example that is amenable to an

analytical solutio n . The response to an impulsive yaw moment

My
(t) = MO(t) (31)

is considered such that m = M/oi ~I , from Eq. (12 ) ,  is a cons tant and
y n

M = 0. The solution to Eq. ( 10) for 0(s) and k (s)  in the form of Eq. ( 18)

m (2 - c)
a(s) — D(s) (32)

m (~~2 + bs + a)
X (s) = D( s) (33)

where

D( s) = S
3 

+ (b + f ) s 2 + [ a + bE + (2 + e)(2 - c ) ]  s + af + d(2 - c) (34)

t Since the unit impulse function 6(t) has uni ts  of l it , it  must  be nondimension-
alized by dividing by w~ p rio r to L~king the Lap lace t ransfo rm defined in Eq.
Eq. (9) ,  which accounts  for the fo rm M / ~ 01 rather  than M/~~ OX for m

n n y

- 17- 
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The Routh stability criterion
10 requires that the feedbacks satisfy the

relations

af+d(2 - c) >O

a + bf + (2 + e)  (2 - c) >0

b + f >0

( b + f ) [ b f + (2 + e) (2 - c) 1 + a b - d(2 - c) >O (35)

These are  satisfied with the feedbacks a , f ~ 0 .~nd b c = d e = 0. Opt imum

values of these two feedback s will be found that minimize dispersion in

acco rdan ce with our  cost funct ion , Eq. ( 17). The pertu rbation solution ,

Eqs . (32 ) through (34),  reduces to

2m ( s  + a )  2
a ( s )  = ~~ ~~, h(s) D (s ) s

3 
+ fs + (a + 4) s + af (36)

.L’ S D

and the f i r s t- o r d e r  solution , Eq. ( 2 7 ) ,  is found to be

= 
(M I  /I)(3 a) [ 3 + a - i(a - 1)f] ( 37)I s t o rd 2 2 2(a - i) f + ( a + 3)

This express ion vanishes for  a = 3, independent  of f. Hence, to the first_

o r d e r  approximation , dispersion caused f rom an impulsive yaw moment can

be eliminated with two simp le feedbacks .  In a more genera l  case , the

feedbacks  would be determined to minimize bo th the dispersion term VV *

and the control moments in our cost function , Eq. (17), with suitable

weighting of each term. Since the feedback a 3 eliminates dispersion , to

the f i r s t - o r d e r  approximation , and a nonzero  value of the feedback f is

r e q u i r e d  for  s tab i l i ty ,  the magni tude  of f is de t e rmined  to effect  equal

- 18-



i n t e g r al_ s q u a r e  values of the cont rol moments in o rde r  to i l lustrate  the

method. The control moments, Eqs.  (13) and (14) ,  with a = 3, b = c = d =

e = 0 , and the solution , Eq. ( 36), can be wri tten

22 a m  fm (s + a )
- y - ____________ (38)

Op 
— - 

D(s) ‘ O y 
— - D( s)

where D(s) is defined in Eq. (36). The integral-square values of these

moments are given by the 13 
integral , Eq. (20), where the coefficients c and

d are  de fined for  each moment by Eqs.  ( 36) and (38).  If the numera tors  of

Eq. (20) a re  equated for  the two moments (s ince the denominators are  the

same) ,  the nondimensional feedbacks a and f mus t  satisfy the relation f = ~ra
for  equal in tegra l - square  values of the control moments.  Thus , the optimal

linear first-order values of our two feedbacks for the assumed cost function

a r e  a 3 and f = ~~ These values should resul t  in zero  dispersion , to the

f i r s t-o r d er  approximation , and requ i re  equal in tegra l - square  values of the

control  mom ent s . The open_ loop dis pers ion  caused by an impulsive yaw

moment  M is readi ly obtained from Eq. (26 )  and the pe r tu rba t ion  solution ,

Eqs . (32) throug h (34) , with all of the feedbacks  equal to zero . The fi rs t -

o r d e r  approximation to this  d i spers ion  is f ound f rom Eq. (37) with a = f = 0

to give the simple result

( 39)
op ip is t ord  I
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Ill. NUMERICAL EVALUATIO N

The equations of motion, Eqs. (2) and (3) ,  were  integrated numerically
to obtain both the open- and closed_loop responses to an impulsive negative
yaw moment with the simple optimal feedbacks derived above . The results
are compared with first-  and second-order analytical approximations to the
dispersion velocity. Ang le of attack , precession rate , and t r ansve r se
velocity hi stories are shown in Figs. 2 through 7 for  the open_ and closed-
loop responses. The inputs and system parameters  a re  as follows:

I = 20 slug ft 2

I = 6.566 ft
= 40 rad/secn

8 Z deg
a = 3

f

M 

: c d e 0  

ft lb sec

The feedback s used in the simulation of Fi gs. 5 through 7 (a = 3, f = ~.f 3) w e r e

dete rmined to give zer o net di sp ersion ve loci ty on the basis of the f i r s t-o r d e r
approximation, Eq. (37) .  The closed-loop velocity, computed f rom a
nume rical integration of the nonlinear equations (2) and (3) ,  is shown in
Fi g. 7 . The feedback control limits the dispersion to approximately 3% of
the open-loop value. The second-order contributions to the net dispersion

velocity, Eq. (26), can be computed from the relat ions , Eqs. (28) and (29) ,
for  the Lap lace t ransfo rm of a product , and f rom the cont rol solutions ,
Eq. (36). The second-order terms are found to be

2
= (M) 0. 02 9 1 f t/ s e c  (40)
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Fi g. 2. Open-loop ang le-o f- a t t a c k  response to impulse
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Fi g. 3. Open-loop precession rate response to impulse
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I~V I 2.00 ft /sec

VE LOCITY lv) , ft/sec
Fig. 4. Open-loop dispers ion  veloci ty response to impulse
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Fi g. 5 . Closed-loop ang le-of- attack response to impulse
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~~~~~~~~~~~~~~ 0~1 0 ~2 0 ~3 0.4

T I M E , sec

Fi g. 6 . Closed-loop p r e c e s s i o n  ra te  response to Impulse
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Fi g. 7 . Closed-loop dis pers ion  veloci ty response to impulse

_ 2 7 -

-- II I ~~~~~~- .--- ~~~ - — -~~~~~



2
=_ L 

~~~ (0.0509 - 0.02831)
clsd ip 2nd ord ~~~ I

= 0 .0222  - 0. 0 123i f t / s e c  (41)

which should be added to the f ir s t - o r d e r  solutions , Eqs .  (39) and (37) ,  of

-2 .00  f t / s e c  and zero , respectively. The results a re  summarized in

Table 1, which is a compa rison of the open- and closed-loop theoretical

va lues  with those computed from a numer ica l  in tegra t ion  of the nonlinear

equat ions of motion.

Table 1. Net dispersion velocity in f t/ s e c

Open Closed
Loop Loop

Fi r s t -Order  Approximation 2. 00 0

F i r s t -  and Second _ O r d e r
App roximations 1.97 0 .0 2 5

Numerical  Integration 2. 00 0. 067 
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IV. SYSTEM IMPLEMENTATIO N

Implementation of a control system to sense the required state

variables and to generate  wind-referenced pitch and yaw con trol moments

has been discussed in conjunction with drag control sy s t ems .  1 ,
2 The princi-

pal feature of such systems , which di f fers  from that of more conventional

aerodynamic control systems , is the requirement to generate  aerod ynamic

control moments in the wind plane , which rotates relative to bod y-fixed

axes at a rate approximately equal to the d i f fe rence  between the roll rate and

the natural pitch frequency when the vehicle is untrimmed . Because relatively

small control moments are  required to cor rec t  for  aerod ynamic disturbances

that would otherwise cause lift nonaveraging , the powe r requirements are

small enou gh that wind-referenced moments can be generated by modulation

— of body_ fixed control surfaces  or  reaction je ts  at the windward-meridian

rotation frequency.  The state variables selected for  this analysis consist

of the ang le of attack , the pitch rate , and the precess ion  rate . Since the

t ransverse  dispersion ve l ocity, Eq. (1 ) ,  is the integral  of the lateral

acceleration , a more app rop riate control variable than total ang le of attack

is lateral  accelerat ion , which is measured directly from a resolution of

bod y- fixed la teral  accelerometers. The pitch rate O can simila rly be

ob tained f rom a resolut ion of bod y_ f ixed  lateral rate gyro measurements .

The precess io n rate is the d i f ference  between the roll rate and the windward-

mer id ian  rotation f r e q u e n c y .  With the missile untr immed in a c i rcu la r  coning

motion at a quasi-s tead y ang le of attack ~~~~~, a body_ f ixed lateral accelero-

mete r  will m e a s u r e  a s t rong per iodic  signal at the windward-me ridian

rotation f r equency .  The d i f fe rence  between thi s si gnal f requency  and the

roll rate is the precess ion rate.  Hence , all requi red  control p aramete r s

can be obtained f rom conventional strapped-down sensors .

-29-

- -- - - —-—--—---. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -—- - - - - - - -



For control of yaw-moment dis turbances only, as discussed in the numerical

example , the only feedbacks required are angle of attack (lateral accej .era-

t ion) and precession rate . For a small or  known roll rate , control could be

achieved wi th in formation deri v ed solely from lateral acceleromete~~z . 
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V. CONCLUSIONS

C r o s s - r ange dispersion of sp inning missiles result ing from lift

nonaveraging can be controlled by app lication of wind-referenced pitch and

yaw moments.  A linear optimal control is derived that minimizes t ransverse

dispers ion ve locity selected as the cost function . An approximation to the

dispers ion velocity permits  the optimal feedback s to be obtained directly

from the s_p lane solution of linearized control equations by means of

classical techniques. The method also permits closed-fo rm so lutions for

the open_ and closed-loop system response to simple d is turbances .  The

control loop , defined to minimize c ross - range  dispersion , complements

control of up- and down-range erro r by ang le-of- .attack control of d rag .  The

combined two -loop system can limit major sources of missile dispersion. 
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NOMENCLATUR E

A , B , C , D , E , F feedback gains

a, b, c, d, e, f t ransformed feedback gains, Eq. (11)

c , c
1
, c

2
, d0, d 1, d2 

Eq. (19)

I p itch or yaw moment of iner t ia ;  cost
func t ion , Eq. (17 )

I roll moment of ine r t i a
x

charac ter i s t ic  length , I /mx~~

L lift force

L9 
lift force derivative

m missi le  mass

m , rn t ransfo rmed pitch and yaw dis turbance
~ y moments , (Eq . (12)

m6 , m6 transfo rmed pitch and yaw cont ro l
y moments , Eqs. (13) and (14)

M , M pitch and yaw dis turbance moments

M5~~ M8y 
pitch and yaw cont rol moments

p roll rate

s Laplace trans’orm var iab le

t time

v Y-component of tran sverse velocity

V t ransverse  velocity, v + iw

net change in average t r ansve r se
velocity

w Z_ component  of t r ansve r se  velocity

W 1, W2 , W3 
weighting constants
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x static marg in (distance of center  ofS 
press~ re aft of center of mass)

Y , Z cross_p lane coordinates

a

6(t)  unit impulse function

O ang le of attack (Eule r  ang le)

8 mean ang le of attack

8 + ang le of attack per turbat ion

x 
~~~~~~
Eq. (22 )

T nondimensional time , ~ tn

4’ precession ang le (Euler ang le)

4’ precess ion rate

precession-rate perturbation

undamped natural pitch frequency
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THE I VAN A. GETTING LABORATORIES

The Laboratory  Operations of The Aerospace corporation is  conducting
experimental  an d theoretical investigations necessa ry  for the evaluation and

app l ica t ion of sc i en t i f i c  advances to new mi l i ta ry  concepts and sys tem s.  Ver-
sa t i l i t y  an d f lex ib i l i ty  have been developed to a hig h degree  by t he laboratory
p ersonne l in dealing with the many problems encountered i n  the nation ’s rap id ly
developing space and miss i le  sys tems.  Expertise in the latest scientific devel-
opments is vita l to the accomp lishment of tasks related to these problem s. The
laborator ies that contribute to this resea r ch are :

Aerop h ys ics  Laboratory : Launch and reentry aerod yn amics, heat trans-
fer , reentry ph ysics , chemical kinetics , structura l mechanics , flight dynamic s.
atmosp her ic pollution , and hi gh-power gas lasers.

C hemist ry  and Ph ysics La boratory : Atmospher ic reactions and atmos-
pheric optics , chemical react ions in polluted atmosp heres , chemical reactions
of excited species  in roc ket plumes , chemical thermod ynamics , p lasma and
laser- induced reactions , laser chemistry, propulsion chemistry, space vacuum
an d radiation ef fec ts  on materials , lubrication and surface phenomena , photo-
sensi t ive  materia ls and sensors , hig h precision laser rang ing, and the appli-

• ca t ion of p h ys i c s  an d chemistry to problems of law enforcement and biomedicine .

E lec t ron ics  Resea rch  Laboratory : Electromagnetic theory, devices , and
propagation phenomena, inc l u d i ng  p lasma electromagnetic s ;  quantum electronics ,

• lasers , an d electro-opt ic s ;  communication sciences , app lied electronics . semi -
con ducting,  supercon ducting, an d crystal  device phys ics , opt ical and acoustical
imaging;  atmosp heric  pollution; millimeter wave and fa r - in f ra red  technology.

Materia ls Sciences Laboratory : Development of new materials; metal
matrix composites a nd new forms of carbon; te st and evaluation of grap hi te
an d ceramics in reentry; spacecraft  materials and electronic components in
nuclear weapon s environment ; application of fracture mecha n ics to stress cor-
rosion and fati gue~~in duced fractures in structural metals.

Space Sciences Laboratory : Atmospher ic and ionospheric physics , radia-
tion from the at mosp here , density and composition of the atmosp here . aur o rae
an d ai rg iow; mag n etosp he r i c  phys ics , co smic  ra y s , generat ion and propagation
of p lasma waves in the magnetosp here;  solar ph ysics , stu dies of solar magnetic
f i e ld s ;  space astronomy, x - ray  astronomy; t he ef fec ts  of nuclear exp losions .
magnetic storms , an d solar  activity on the earth’ s atmosp here , ionoa p her ~ . and
magnetosp here ;  the e f fec t s  of optical , e lectromagnetic , and particulate radia-
tions i n  space on Space systems.

THE AEROSPACE CORPORATION
El Segundo , Ca l i fo rn ia  
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